
Monte Carlo, Revisited
Derrick W. Turk

Director’s cut! With narration
by the author.

Great expectations…

“We’ve run a Monte Carlo simulation – modeling each
independent block of development – and we have good news. If
we run an extensive pilot program to de-risk the asset, the P50
outcome for the Implausible Codename project has an IRR over
20%!”

How many times have you heard – or said –
something like this about a probabilistic

modeling project? How did that turn out? A
few red flags?

How often do you hit that P50?

• Is it about half the time?

• Less than a quarter?

• I have no idea because
management always ignores
our models?

• Does the P50 even matter?

Things that make you say
“hmmmm….”

That’s my son Alex,
modeling the concept of

“hmmmm”. He’s a
Monte Carlo skeptic

like your boss.

Let’s play

• SPML = “simple” probabilistic modeling language

• We list named variables and define their distributions
• Constants, like 500.0

• (uniform lo hi)

• (normal mean sd)

• (lognormal mean p10/p90-ratio)

• Operations on other variables or distributions, like (+ x y) or (- z 17.3)

• We’ll see some more later!
I wanted a simple visual tool to run
interactive demos for this talk, and

accidentally ended up creating a custom
modeling language!

Model #1 – “Great expectations”

This is where the first interactive demo
went. I’ll provide some screenshots and try

to narrate the high points!

This “naïve” model
matches the story on the
first slide – sub-projects

are modeled as
independent variables.

Here we’re visualizing
some univariate stats for
the net_rev variable. In

our simplified world, the
project1-project5

variables stand in for
revenue less variable
costs, and cost1-cost5

stand in for capex. Sort
of – it’s a toy world!
We’re trying to keep

things simple so we can
focus on some key

issues.

The mean and P50
net revenue look

pretty good.

Parse and compile errors
would go here, if we had

any, which we don’t,
because this isn’t live

and thus the code can be
“perfect”.

Here’s a view of
multivariate stats for
project1 and project2.
Remember, these are
independent, and it

shows – no correlation
(more on this in a

moment).

This “ROI” variable is
my hacky attempt to
quantify return on

investment in this toy
model – net revenue

over capex.

The “ROI” for this model
looks great – the P50 is

about 10%, and the
average is 15%. That’d

get us funded in a lot of
organizations.

How can this go wrong?

• Let’s assume these are
exploration & development
projects in a new basin

• If project #1 is a bust, what
does that mean for our
chances of project #2
succeeding?

• What about for our chances of
attempting project #2?

If we’re blindfolded and
grabbing bits of cereal out of

a box, how many berries
before we ask if this is

“oops, all berries”?

For that matter, if we hate
berries, how long do we keep

trying this stupid cereal?

Covariance and correlation

• Covariance is exactly what the name suggests – a measure of
how two variables tend to vary together (or not)

• Covariance = 0 when variables are independent (but how often
does that really happen)?

• Covariance > 0 when they tend to vary in the same direction

• Covariance < 0 when they tend to vary in opposite directions

• Correlation (well, Pearson’s ρ) is covariance normalized to fall on
an interval from -1 to 1, which makes it a little nicer to work
with for modeling

Nothing to say here!
Hopefully this is all just
review material. These

concepts are very important
to statistics.

Danger, danger!
We still have to be careful even
when we quantify correlation.

This is Anscombe’s quartet:
each data set has the same

mean X, mean Y, variance of X,
variance of Y and correlation!

But they are very different.

It’s outside this
scope, but read

about the
Gaussian copula
model and the
2008 financial

crisis for a great
case study.

Simulating with covariance

• Monte Carlo simulation can include variables coupled by a
specified covariance (usually in the form of a correlation
coefficient)

• In SPML, we can write:
• (correlate coef some-distribution some-variable)

• with correlation coef … end

• If your tools can’t do this, get better tools!
There are many ways to
incorporate correlation

into a model, from
simple to complex. But
it’s imperative that your

tools at least let you
incorporate it.

Model #2 – “Everything is connected”

This is where the second interactive demo
went. I’ll provide some screenshots and try

to narrate the high points!

Our model now
includes (strong)

correlation between all
project outcomes and

(weak) correlation
between all costs.

This is what (positive)
covariance does – it
increases the overall

variance. The highs are
higher and the lows are
lower, because they tend
to come in flocks now. If

we neglect
covariance/correlation,

our models result in
overconfidence around

the mean due to
understated variance.

The mean and P50
net revenue don’t
look as good now!

But the P10 is much
higher.

Check out that
covariance! That’s

why unitless
correlation tends to be

more useful.

This is the “nothing up
my sleeve” shot – we
can see that pairs of

projects have
correlated outcomes as

requested.

Here’s our “ROI” –
much worse than in

our naïve model.

I sure hope we
didn’t make any

multi-million dollar
decisions based on
that first model…

Taking the off-ramp

• In any big enough project, we
make decisions along the way

• Based on what we’ve found
so far, we decide how (or how
not) to proceed

• Realistic models can’t assume
fixed development paths, but
need to model the decisions!

• The simple case of this is
dependency between projects

Not much to say here!
Exploration projects

especially usually come
with “off ramps” – and
sometimes “on ramps”.

Simulating decisions

• Some specialized tools can model this directly

• You can probably hack something together in other tools

• In SPML, we can write:
• (< some-variable some-other-variable) [or >, <=, >=], which will evaluate

to 0 or 1 in each realization

• (cond some-0-or-1-variable some-variable some-variable)

The fundamental constraint on SPML’s design was “what one guy
with a three-month old baby can write in a weekend”. For that

reason, the syntax is easier for a computer to parse than for a human
to write, and the type system is trivial – everything’s a floating point

number.

“cond” is like an “if statement”:
v = (cond x y z)

means
if (x /= 0) { v = y } else { v = z }

Model #3 – “Everything is connected”

This is where the third interactive demo
went. I’ll provide some screenshots and try

to narrate the high points!

Now, project 2 only
happens if project 1 has

positive net revenue.
Project 3 depends on

project 2. And so on. We
also still include

correlation.

Our net revenue
distribution is now

multi-modal, although
it’s hard to see here.
We’ve got one mode
where only project 1
happens, one where

we stop after project 2,
and so on.

Our mean outcome
looks better again,
even if the median
case is lower. That’s
because we’ve now
modeled the ability
to “cut our losses”!

In the heatmap, we can
see that the majority of

trials don’t execute
project 2. (That’s the

“hot streak” at zero on
the y axis.)

We still honor
correlation, in the

event that the project
actually happens –

otherwise, it’s zeroed
out!

Obligatory “ROI”
shot! We’ve really

limited our
downside and

improved the mean,
even if the median
didn’t move much.

We’re now
approaching a

respectable model
for guiding

decision making.

Would you like to play a game?

You can try this out now, even
on your phone (probably, I
don’t speak Android)

https://apps.terminusdatascience.com/voigame/game

I’m not going to dump
screenshots here – go play the
game! Try to pay attention to
the value (difference in mean
payout) of information as we

pay for more “science”.

Asking useful questions

• “That’s nice”, your boss says

• “I’m really glad your pee fifty is
so… probable… or whatever”

• “How does this help me make a
decision?”

“Where is the wisdom we have
lost in knowledge?
Where is the knowledge we have
lost in information?”
- T. S. Eliot, “The Rock”

Alex is a natural in
the role of

“unimpressed boss”.

To me, this is the
key: how does our

model help us make
better decisions?

Useful questions

• Some useful questions are about probability of achievement: “what
is the chance that we achieve consistent year-over-year BOE
growth over the next 5 years?”

• Some useful questions are about risk, which can sort of be
probability of achievement’s evil twin: “what is the chance that
our net loss exceeds 30 million dollars?”

• Even when useful questions can be answered by simple
summary statistics, they’re not often on any variable which
directly appears in the model: “How many years until we break
even, on average? Best case? Worst case?”

Nothing to add here!

Tricking computers into answering them

• Direct support for these kinds of queries is rare

• Sometimes we can trick them, though

• Remember SPML’s “Boolean” operators (<, <=, >, <=)?

• Consider: pays_out = (> gross_revenue expenses)
• pays_out = 1.0 if gross revenue > expenses, 0.0 otherwise

• So the mean of pays_out is the probability of achievement!

• The P90, P50, P10 can be interpreted as “does the P90 [etc.] outcome
pay out?”

It’s fun and useful to find ways to
smuggle more interesting computation

into seemingly simple systems.

“The street finds its own
uses for things”

– William Gibson

Tricking computers II: type derangement

• In fact, we can “pun” all sorts of Boolean operations into
floating-precision math, as long as we always have true = 1.0
and false = 0.0

• “and” = *

• “or” = + [kind of…]

• “not” = x → (1.0 – x) [unless you used + as or!]

To elaborate, “or” = “+” works as long as
anything non-zero is “true”. But “not x” =

(1.0 – x) only works if “true” is 1.0 exactly. These
are cheap hacks – you get what you pay for!

Model playtime – let’s build some metrics

This is where the final interactive demo
went. I’ll provide some screenshots and try

to narrate the high points!

Really, there wasn’t
much to say with a

model this simple. We
can compute metrics

like
“achieved_hurdle”…

…and interpret the
summary statistics.

Looks like a 49%
chance of

achieving our
target ROI.

The “hurdle_rate” is a
variable bound to a

constant – it’s got the
same value in every trial.

That’s as far as we got in the hour we had! If you’d like to keep reading,
you’ll find an abridged version of a case study about adding this

“probability of achievement” capability to an existing, not very flexible,
Monte Carlo tool. This was accomplished with a custom domain-specific

programming language (notice a theme?).

I’m not going to annotate these slides, but if you’re interested in more
detail than is available here, please follow the link in the next slide to the

original talk from 2017 from which this mini-study is excerpted.

Thanks to the Houston chapter of SPEE for hosting the original session of
this talk, and thank you for reading! Please look us up at

https://terminusdatascience.com and feel free to write
dwt@terminusdatascience.com with any questions.

- Derrick

https://terminusdatascience.com/
mailto:dwt@terminusdatascience.com

But I already have a fancy simulation tool!

• (And it doesn’t let me do that.)

• That’s fine: where there’s a will, there’s a way* (as long as you
can get the raw trials out)

• Here’s a short case study involving a “bolt-on” system for
answering these kinds of questions

• This is super abridged! See:
https://github.com/derrickturk/dsl-talk

* For problems solvable** by Turing machines
** Although you may need to wait a few trillion years

https://github.com/derrickturk/dsl-talk

Domain-Specific Languages

• Let users express their problems in their vocabulary

• Give them simple, composable parts (“words”)

• And let them build up larger systems “in their own words”

• It’s on us to figure out how to turn these domain-specific
programs into efficient “solutions”

• That is: parsing, interpreting or compiling, executing

Case Study: (SC)PML
(Some Client’s) Portfolio Model Language

• The client has built a sophisticated set of teams, processes, and
technology for modeling, managing, and optimizing the
corporate portfolio

• Fully probabilistic characterizations of available opportunities:
timing, dependencies, cashflows

• Optimized for expected NPV under constraint and environment
“scenarios”

• See SPE-187162-MS

Case Study: (SC)PML

• We’ve also built a high-performance post-processor for Monte
Carlo simulation

• Run the “optimized” selections under many probabilistic
realizations (based on modeled uncertainty)

• Report mean, P90, P50, P10 for each cashflow item (e.g. total
capital, gross oil…)

Case Study: (SC)PML

This worked well, but interesting questions look less like

“what’s the P90 total oil production in 2018 for the Permian?”

and more like

“what’s the probability of achieving our cashflow targets, while
also staying within the desired capital budget?”

In fact, there are an infinite number of these interesting
questions… and the programmer is the worst person of all to try
to guess them up front.

Case Study: (SC)PML

• My solution: a simple expression language for describing how to
aggregate and summarize cashflows and collect statistics from them

• It allows arithmetic operations, discounting and rate-of-return
calculations, cumulation over time, and simple logical comparisons (e.g.
“does this value exceed this threshold?”)

• Minimalist syntax (s-expressions) based on Lisp

• Composable: operators nest in the expected way (“cumulative of total of
NPV of difference of …”)

• Trivially type-safe: everything’s a number

• Easy to parse: prefix notation and (lisp style forms) remove
ambiguity from the grammar (no PEMDAS hacks)

Case Study: (SC)PML

(statistics
(summary (by-attribute [Region]) each-year
(total [Wells Per Year])
(total [Net BOE Volume Mboe])
(total [Net Lifting LOE M$])
(total (+ [Net Capital M$]

[Net ITS M$]
[Net Capitalized OH M$]
[Net Leasehold M$]
[Net Seismic M$]))

as [Net Total Capital M$]
(total [Net ATCF 0 M$])
(cumulative (total (discount 0.10 [Net ATCF 0 M$])))

as [Cumulative Net ATCF 10 M$]
)

mean
(percentile 90)
(percentile 50)
(percentile 10)

)

First, we replicated existing
(static reports) functionality in
(SC)PML…

Case Study: (SC)PML

(statistics

(summary all-groups all-times

(and

(>= (total [Net ATCF 0 M$])

(average (* { 5 7 9 10 15 7 5 } 1000000)))

(>= (total [Net Oil Volume Mbbls])

1000000))

)

mean

standard-deviation

(percentile 90)

(percentile 50)

(percentile 10)

)

… but then we started building
tools for ad-hoc investigations
and “probability of
achievement” queries.

Example: year/year production growth

• We’re curious about the chance to achieve consistent year-over-
year production (Net BOE) growth, say over the next 5 years for
the Permian Region.

• Some metrics we may want:
• % change in total Net BOE year-to-year for first five years

• probability of positive % change in each year

• probability of positive % change every year over five years

Posing the questions

• Let’s write a simple (SC)PML
“statistics” program:

• First, we’ll specify
aggregation by region and
over all times

• Then, we’ll start defining
summary metrics: for each
year 1 through 5, find the %
change in total Net BOE
volume from the previous
year to that year.

(statistics
(summary (by-attribute [Region]) all-times

(* (/ (- (total (in-year 1 [Net BOE Volume Mboe]))
(total (in-year 0 [Net BOE Volume Mboe])))

(total (in-year 0 [Net BOE Volume Mboe])))
100)

as [0->1 YOY growth %]

(* (/ (- (total (in-year 2 [Net BOE Volume Mboe]))
(total (in-year 1 [Net BOE Volume Mboe])))

(total (in-year 1 [Net BOE Volume Mboe])))
100)

as [1->2 YOY growth %]

(* (/ (- (total (in-year 3 [Net BOE Volume Mboe]))
(total (in-year 2 [Net BOE Volume Mboe])))

(total (in-year 2 [Net BOE Volume Mboe])))
100)

as [2->3 YOY growth %]

(* (/ (- (total (in-year 4 [Net BOE Volume Mboe]))
(total (in-year 3 [Net BOE Volume Mboe])))

(total (in-year 3 [Net BOE Volume Mboe])))
100)

as [3->4 YOY growth %]

(* (/ (- (total (in-year 5 [Net BOE Volume Mboe]))
(total (in-year 4 [Net BOE Volume Mboe])))

(total (in-year 4 [Net BOE Volume Mboe])))
100)

as [4->5 YOY growth %]

Posing the questions

• We’ll also capture some logical
values (1 or 0) indicating
whether the change year-over-
year was positive.

• Our final summary metric
combines these individual
logical values with and to create
an indicator for sustained
growth in every year.

• Finally, we request the mean,
P90, P50, and P10 stats metrics.

(>= (total (in-year 1 [Net BOE Volume Mboe]))
(total (in-year 0 [Net BOE Volume Mboe])))

as [0->1 YOY growth achieved]

(>= (total (in-year 2 [Net BOE Volume Mboe]))
(total (in-year 1 [Net BOE Volume Mboe])))

as [1->2 YOY growth achieved]

(>= (total (in-year 3 [Net BOE Volume Mboe]))
(total (in-year 2 [Net BOE Volume Mboe])))

as [2->3 YOY growth achieved]

(>= (total (in-year 4 [Net BOE Volume Mboe]))
(total (in-year 3 [Net BOE Volume Mboe])))

as [3->4 YOY growth achieved]

(>= (total (in-year 5 [Net BOE Volume Mboe]))
(total (in-year 4 [Net BOE Volume Mboe])))

as [4->5 YOY growth achieved]

(and (>= (total (in-year 1 [Net BOE Volume Mboe]))
(total (in-year 0 [Net BOE Volume Mboe])))

(>= (total (in-year 2 [Net BOE Volume Mboe]))
(total (in-year 1 [Net BOE Volume Mboe])))

(>= (total (in-year 3 [Net BOE Volume Mboe]))
(total (in-year 2 [Net BOE Volume Mboe])))

(>= (total (in-year 4 [Net BOE Volume Mboe]))
(total (in-year 3 [Net BOE Volume Mboe])))

(>= (total (in-year 5 [Net BOE Volume Mboe]))
(total (in-year 4 [Net BOE Volume Mboe]))))

as [5-year YOY growth achieved])

mean
(percentile 90)
(percentile 50)
(percentile 10)

)

Programs are trees
• We represent them as trees, so that we

can manipulate them in our parsers,
type checkers, compilers, and so on.

• But we can also let users edit them as
trees, turning common GUI
components into fancy “structural
editors” (look ma, no syntax errors).

• I shamelessly stole this combination of
Lispy syntax and a GUI tree editor
from a videogame

Thanks for attending!

